Chuyện nghề: Data Scientist là gì? Và hành trình để trở thành Data Scientist

Vào năm 2018, Harvard Enterprise Evaluation đã bầu chọn nghề Information Scientist – Nhà khoa học dữ liệu công việc “sizzling” nhất thế kỷ 21 để nhấn mạnh sự thành công và sức ảnh hưởng của Dữ liệu đến thị trường thế giới. Tuy nhiên, lĩnh vực này chưa hoàn toàn lớn mạnh như kỳ vọng, cũng như còn nhiều hiểu lầm – hiểu sai về công việc information scientist là gì. Nó xuất hiện với nhiều người như một thứ “kỹ thuật mờ”, có thể có khả năng triển khai sản phẩm hoặc dịch vụ của họ.

Sự hiểu lầm này có thể dẫn đến thất bại trong việc sử dụng tốt các nguồn lực. Hãy cùng lùi lại một bước để có cái nhìn chi tiết hơn về nghề Information Scientist, cùng như giải mã cách để bạn có thể “dấn thân” theo con đường này.

Information Scientist là gì?

Information Scientist (kỹ sư khoa học dữ liệu) là những người phân tích, sắp xếp và thay dữ liệu “kể chuyện”, bất kể nó có cấu trúc hay không. Công việc của họ sẽ cần phối hợp giữa cả khoa học máy tính, thống kê và toán học. Họ sẽ là người phân tích, xử lý và “mô hình hóa” các dữ liệu, sau đó diễn giải các kết quả để tạo ra các kế hoạch hoạt động cho group và doanh nghiệp.

Nói một cách dễ hiểu, nghề information scientist làm việc cũng dữ liệu và cho ra các perception mang tính phân tích. Họ sẽ truyền đạt các phát hiện và perception này với các bên liên quan – từ lãnh đạo cấp cao, quản lý đến khách hàng. Từ đó các công ty có thể trực tiếp hưởng lợi từ việc đưa ra các quyết định sáng suốt nhất để thúc đẩy tăng trưởng kinh doanh và lợi nhuận của họ (tức là, phụ thuộc vào bối cảnh của các ngành công nghiệp).

Tại Việt Nam, ngành CNTT cũng đang chứng kiến sự tăng trưởng tiềm năng của ngành Khoa học dữ liệu. Ngày càng có nhiều doanh nghiệp quan tâm hơn tới ngành khoa học dữ liệu và sẵn sàng đổ tiền cho việc nghiên cứu và phát triển. Không sai khi nói nghề Information Scientist đang là một trong những ngành sizzling nhất trên thị trường Việt Nam, liệu bạn hiểu rõ về nó?

Công việc của một Information Scientist

Information Science là gì ?

Credit score: Matt Dancho

Mục tiêu của bộ phận Information Science là làm sao để các bộ phận các tại Doanh nghiệp có thể đưa ra các quyết định dựa trên dữ liệu tốt hơn. Vì thế Information Science có vai trò hỗ trợ (tương tự như CNTT) cho phép tổ chức hoạt động tốt hơn và tăng giá trị nhanh hơn thông qua việc ra quyết định tốt hơn.

Luồng công việc của bộ phận Information Science sẽ gồm các Cột mốc quan trọng (đám mây), các giai đoạn (đường kẻ đứt nét) và các bước (field màu xám). Quy trình bắt đầu từ một vấn đề cụ thể (Cột mốc 1) – doanh nghiệp sẽ ưu tiên đưa vấn đề này đến nhóm khoa học dữ liệu và họ sẽ bắt đầu vào quy trình quản lý dự án.

Chu trình Information Science có 3 giai đoạn:

  1. Chuẩn bị – Dữ liệu được thu thập và làm sạch. Điều này cần một lượng thời gian đáng kể vì hầu hết dữ liệu còn nhiễu, có nghĩa là cần thực hiện các bước để cải thiện chất lượng và chuyển nó sang thành định dạng mà máy có thể hiểu và đọc.
  2. Thử nghiệm – Đây là nơi các giả thuyết được tạo ra, dữ liệu được trực quan hóa và các mô hình được tạo ra. Điều này mất ít thời gian hơn so với khâu Chuẩn bị.
  3. Phân phối – Báo cáo kết quả được ghi lại thành tài liệu, slideshow trình bày cho quản lý và một khi quản lý thông qua, các quyết định sẽ được truyền tải xuống để thay đổi.
Có Thể Bạn Quan Tâm :  

Khi kết thúc quy trình, phần triển khai này sẽ là lúc một Enterprise Worth (cột mốc) mới cho doanh nghiệp được tạo ra.

Phân biệt Information Scientist vs Information Engineer vs Information Analyst

công việc data scientist

“Tháp workflow” của bộ phận Information Science

Tuỳ thuộc vào quy mô và mô hình doanh nghiệp, mỗi vị trí tại mỗi tổ chức sẽ có vai trò và trách nhiệm khác nhau. Tuy nhiên, mô hình tổng quan nhất về sự khác nhau của bộ ba Information như sau:

  • Information Scientist sẽ phân tích, kiểm tra, tổng hợp, tối ưu hóa dữ liệu và trình bày nó cho công ty. Các nhà khoa học dữ liệu thường có 4 nhiệm vụ chính trong một công ty: Phân tích, kiểm tra, tạo và trình bày chúng cho nhóm.

Các nhà khoa học dữ liệu phải có một nền tảng toán học và thống kê. Họ cũng hiểu và thành thạo việc tạo ra các mô hình máy học và trí tuệ nhân tạo. Việc tìm kiếm Information Scientist của doanh nghiệp cũng như tìm kiếm một Full-stacker và đòi hỏi nhiều thời gian.

  • Information Engineers sẽ phụ trách thu thập dữ liệu liên quan. Họ di chuyển và biến đổi Dữ liệu này thành “Pipeline” cho bộ nhóm Khoa học dữ liệu. Họ có thể sử dụng các ngôn ngữ lập trình như Java, Scala, C ++ hoặc Python tùy theo nhiệm vụ của họ. Kỹ sư dữ liệu chuyên về 3 hành động dữ liệu chính: thiết kế, xây dựng và sắp xếp các đường ống dữ liệu.

Có thể gọi họ là loại kiến ​​trúc sư dữ liệu. Kỹ sư dữ liệu thường có kỹ thuật máy tính hoặc nền tảng khoa học và kỹ năng tạo hệ thống.

  • Information Analysts cũng sẽ tham gia vào việc lấy dữ liệu liên quan từ nhiều nguồn khác nhau và chuẩn bị nó để phân tích thêm. Dựa trên phân tích, một nhà phân tích dữ liệu cần đưa ra kết luận, hoàn thành các báo cáo cùng hình ảnh minh hoạ.

Do đó, chúng ta có thể thấy rằng phạm vi công việc của các nhà phân tích dữ liệu nhằm phân tích và mô tả các chiến lược trong quá khứ hoặc trước đó dựa trên dữ liệu quá khứ hoặc hiện tại, trong khi các nhà khoa học dữ liệu tập trung vào việc dự đoán và tính toán trước để tạo ra các chiến lược trong tương lai.

Workload của một Information Scientist

Nhìn vào nhánh Information Science, hầu hết mọi người sẽ nói rằng Information Science = Machine Studying. Tuy nhiên trên thực tế, Machine Studying (hoặc Modeling) sẽ chỉ chiếm khoảng 20% trong workload của một Information Scientist. Phần trăm công việc của Information Scientist được phân chia như sau:

  • Hiểu vấn đề của doanh nghiệp: Tiếp xúc và giao tiếp với Lãnh đạo/ Khách hàng (15%)
  • Làm việc của Dữ liệu: Lọc sạch dữ liệu, Học information, Visible hoá, Xử lý, Chuyển đổi, và Thấu hiểu (70%)
  • Truyền tải kết quả: Báo cáo, Soạn Slide Decking, và Construct nên Công cụ ra quyết định tự động) (15%)

Information scientist sẽ dựa vào phân tích dự đoán, học máy, điều hòa dữ liệu, mô hình toán học và phân tích thống kê. Một chuyên gia dữ liệu sẽ tiến hành xử lý khối lượng dữ liệu lớn theo quy trình như sau:

data scientist là gì

Machine Studying Mannequin

Mặc dù sự hiểu nhầm trên gần như đã phổ biến ở mọi nơi, việc xây dựng các mô hình máy học Machine Studying fashions chỉ là một bước của cả quá trình workload của một nhà khoa học dữ liệu. Sau khi đầu ra mô hình xử lý hậu kỳ, Information scientist sẽ truyền đạt kết quả cho các nhà quản lý, thường sử dụng các phương tiện trực quan hóa dữ liệu. Khi kết quả được thông qua, nhà khoa học dữ liệu đảm bảo công việc được tự động hóa và được phân phối một cách thường xuyên.

Nói tóm lại, người làm Information Scientist sẽ bao gồm:

  • Áp dụng các kỹ thuật định lượng từ kiến thức về thống kê, kinh tế lượng, optimizations và machine studying / deep studying về giải pháp cho doanh nghiệp từ nhiều lĩnh vực
  • Vận dụng các phương pháp thống kê để xây dựng các mô hình dự đoán
  • “Mở đường” cho việc ra quyết định dựa trên perception phân tích từ các bộ information có cấu trúc và không cấu trúc
  • Xác định các nguồn dữ liệu mới và khám phá tiềm năng sử dụng của chúng trong việc phát triển thêm các perception trong phát triển sản phẩm
  • Khám phá công nghệ mới và các giải pháp phân tích để sử dụng trong phát triển mô hình định lượng
  • Thiết kế và phát triển các báo cáo và bảng điều khiển tương tác tùy chỉnh
  • Duy trì và cải thiện các mô hình hiện có
  • Truyền tải perception và các phân tích với dàn lãnh đạo và Stakeholder cũng như các phòng ban liên quan để tiến hành thay đổi/ cập nhật
Có Thể Bạn Quan Tâm :   Nang vú (u nang tuyến vú): Nguyên nhân, triệu chứng và chẩn đoán

Lộ trình trở thành Information Scientist trong năm 2022

kĩ năng data scientist

Tin vui cho tất cả những người đang bước vào ngành Information Science: Đường studying curve của ngành này không còn quá dốc nữa – đường vào nghề ở thời điểm hiện tại đơn giản hơn ngày xưa rất nhiều. Từ bất kì background nào bạn cũng có thể vào lĩnh vực này, đương nhiên phải kiên trì học nhiều – hiểu nhiều – cày nhiều, nhưng có thể đi chậm và chắc từ những cái căn bản.

Các ngôn ngữ Lập trình cơ bản

Python

Python mãi xứng đáng có một vị trí cao ổn định trong bộ toolkit của một Information Scientist. Nhiều chuyên gia chọn ngôn ngữ này vì hệ sinh thái được thiết kế đặc biệt cho khoa học dữ liệu. Python có cộng đồng phân tích dữ liệu lớn nhất, sẽ dễ dàng tìm thấy các ví dụ về phân tích trong Kaggle, tìm các ví dụ mã trong Stackoverflow (trang net hỏi đáp với hầu hết người mới bắt đầu và thường nâng cao câu hỏi là tốt) và cơ hội việc làm vì nó là ngôn ngữ phổ biến nhất trên thị trường.

SQL

Việc “nói cùng ngôn ngữ với database” là điều cần thiết cho các nhà khoa học dữ liệu. Bạn sẽ cần phải thành thạo SQL (xem thêm SQL là gì?) để có thể lấy thông tin từ cơ sở dữ liệu bằng cách sử dụng các hướng dẫn truy vấn mà không cần phải nối mã tùy chỉnh.

R

Với nhiều tính năng đặc biệt, R là ngôn ngữ được “làm thủ công” dành riêng cho information science và là khởi đầu cần thiết cho các Information Scientist năm 2020. Mọi thông tin và vấn đề số liệu sẽ được xử lý bằng R.

Hadoop

Mặc dù kiến thức về công cụ này là không bắt buộc, nhưng Hadoop làm tăng giá trị và khả năng chuyên môn của một nhà khoa học dữ liệu, đặc biệt nếu họ có kinh nghiệm với Hive hoặc Pig. Các công cụ đám mây như Amazon S3 cũng có thể giúp ích rất nhiều.

Machine Studying

Không có cách nào để trốn được Machine Studying (xem thêm Machine Studying là gì?) đâu, bạn chắc chắn phải hiểu hết những điều cơ bản của ML. Điều này cung cấp cho bạn một kiến thức khổng lồ để hiểu cách các mô hình khác nhau hoạt động bên trong và thậm chí nghĩ về mô hình tốt hơn cho từng vấn đề.

Có nhiều kỹ thuật phổ biến cho hầu hết mọi mô hình và bạn nên học các kỹ thuật này trước và chỉ sau đó tập trung vào tìm hiểu sự khác biệt toán học và chi tiết triển khai của chúng.

Thống kê (Statistics)

Phần tốt nhất, quan trọng nhất và không could là khó nhất để cuối cùng – Thống kê. Chính kỹ năng này sẽ phân biệt là Information scientist và Machine Studying Engineer. Không có đường tắt ở đây. Bạn nên bắt đầu với thống kê mô tả, biết cách thực hiện phân tích dữ liệu khám phá tốt (EDA) hoặc tối thiểu là các khái niệm cơ bản về xác suất và suy luận, hiểu rõ các khái niệm về sai lệch lựa chọn, Nghịch lý Simpson, liên kết các biến (cụ thể là phương pháp phân tách phương sai ), những điều cơ bản của suy luận thống kê (và thử nghiệm A / B nổi tiếng như suy luận được biết đến trên thị trường), và một ý tưởng cho thiết kế thử nghiệm.

Mushy Ability: Suy nghĩ như một Information Scientist

Việc tự trau dồi và rèn luyện tư duy của một Information Scientist là một trong những kỹ năng quan trọng để phân biệt giữa một Scientist giỏi và một Scientist vừa đủ. Một số gợi ý cho bạn để tự rèn luyện cho mình:

  • Luôn tò mò

Hãy luôn đặt câu hỏi “Vi sao?”, tìm liên kết và những thông tin mới với những vấn đề trong cuộc sống hằng ngày. Trong công việc, các nhà khoa học dữ liệu cho ra perception từ dữ liệu và thông tin từ dataset và đưa ra các quyết định quan trọng theo đó. Việc phân tích hoàn hảo sẽ không hữu ích nếu nó không giải quyết được vấn đề cơ bản. Đôi khi bạn cần quay lại, thử một cách tiếp cận mới và điều chỉnh lại câu hỏi bạn đang cố gắng trả lời. Hãy luôn đặt câu hỏi.

  • Có tính tiểu tiết

Các nhà khoa học dữ liệu sử dụng rất nhiều công cụ để quản lý quy trình công việc, dữ liệu, chú thích và mã của họ. Điều quan trọng là phải làm việc khoa học, quan sát, thử nghiệm và ghi chép lại mọi lúc, để bạn có thể xem lại và suy nghĩ. Ngoài ra cần phải lưu lại tất cả các nghiên cứu, thông tin bạn phát hiện được không chỉ ở hiện tại – trong quá khứ nữa.

  • Biết sáng tạo

Nghe thì có vẻ mâu thuẫn, nhưng khoa học dữ liệu cần được tiếp cận ở nhiều cách thức – phương diện và góc nhìn khác nhau. Bạn không nhất thiết phải có background kĩ thuật, nhưng bạn cần phải có tư duy sáng tạo. Thông thường, suy nghĩ thay thế (various considering) là chìa khóa cho cách bạn giải quyết một vấn đề mới. Nó sễ đi tune tune của tư duy logic để giúp bạn thành công trong nghiên cứu và giải mã perception.

  • Ngừng lo lắng

Bạn không nhất thiết phải là chuyên gia lập trình, hay tài chính hay bắt buộc từ chuyên môn nào cả. Rất nhiều Information Scientist trên thế giới đến từ ngành luật hoặc kinh tế hoặc khoa học hoặc cả bác sĩ. Tất cả nằm ở chính mình và nỗ lực mà thôi.

Có Thể Bạn Quan Tâm :   SiO2 Là Gì ? Những Ứng Dụng Hay Trong Thực Tiễn

Nếu có thể linh hoạt và làm việc có hệ thống, bạn hoàn toàn có thể quen với các software, frameworks và datasets, cũng như nhanh chóng phát triển sự thấu hiểu về về ngành và vấn đề của doanh nghiệp.

Tìm kiếm các nguồn học tập dành cho Information Scientist

Các Information Science course phổ biến nhất hiện nay

  1. Machine Studying (Google ML): Các khóa học nhanh được replace liên tục từ Google.
  2. Deep Studying (Kaggle Be taught): Sản phẩm mới từ Kaggle bên cạnh động đồng Kaggle đang sizzling, từ lý thuyết nhỏ đi kèm với nhiều ứng dụng thực tế.
  3. Python for Information Science and Machine Studying (Udemy): Giải thích rất rõ ràng về các khái niệm khác nhau của cả khoa học dữ liệu và máy học. Khóa học này sẽ giúp bạn thành thạo thư viện scikit-learn phổ biến cho máy học. Nó cũng bao gồm phần giới thiệu về Spark và TensorFlow.
  4. Full SQL Bootcamp (Udemy): Một nhà khoa học dữ liệu cần có nhiều công cụ hơn trong kho vũ khí của mình hơn là chỉ lập trình R và Python. SQL là một ngôn ngữ quan trọng khác mà bạn sẽ thường sử dụng để tương tác với cơ sở dữ liệu. Khóa học này đã giúp tôi có được thực tập hiện tại và dạy tôi mọi thứ tôi cần biết về SQL trong hai ngày.
  5. DataCamp: DataCamp có các khoá học từ 4-6 tiếng. Các khóa học này có các video giải thích ngắn và sau đó bạn sẽ có các bài tập để áp dụng các nguyên tắc từ các video. Mọi thứ xảy ra trong trình duyệt của bạn, vì vậy bạn không phải cài đặt bất cứ thứ gì. Điều này làm cho DataCamp trở thành sự giới thiệu hoàn hảo cho lập trình R và Python.

Tham khảo các khoá học Information Science miễn phí trực tuyến tại đây

Các đầu sách về Information Scientist cần đọc

  1. Machine Studying:
    • Understanding Machine Studying: From Principle to Algorithms
    • Deep Studying
    • Machine Studying Craving
  2. Statistic:
    • The Components of Statistical Studying
    • An Introduction to Statistical Studying with Purposes in R
  3. Information:
    • A Programmer’s Information to Information Mining: The Historic Artwork of the Numerati
    • Mining of Large Datasets

Github cần observe:

Các đầu git không thể bỏ qua nếu như đang dấn thân vào DS:

  • Superior Deep Studying
  • Superior Machine Studying
  • Superior NLP
  • Superior RL
  • Superior Textual content Summarization
  • Superior Recommender Methods

Hy vọng với thông tin từ bài weblog sẽ cung cấp được kiến thức hữu ích về Information Scientist là gì cũng như các lộ trình cơ bản để trở thành lập trình Information Scientist tương lại. TopDev Weblog cũng sẽ tiếp tục sequence về Information Science trong thời gian sắp đến. Đừng bỏ lỡ nhé!

Có thể bạn quan tâm:

  • Tổng hợp Cheat Sheets cho AI, Neural Networks, Machine Studying, Deep Studying và Huge Information
  • Information visualization trong Machine Studying
  • Rèn giũa mindset của một Information Scientist

Xem thêm việc làm Information Scientisttrên TopDev

Back to top button